Generalized Symmetric Berwald Spaces
Authors
Abstract:
In this paper we study generalized symmetric Berwald spaces. We show that if a Berwald space $(M,F)$ admits a parallel $s-$structure then it is locally symmetric. For a complete Berwald space which admits a parallel s-structure we show that if the flag curvature of $(M,F)$ is everywhere nonzero, then $F$ is Riemannian.
similar resources
Commutative curvature operators over four-dimensional generalized symmetric spaces
Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.
full textProperties of Generalized Berwald Connections
Recently the present authors introduced a general class of Finsler connections which leads to a smart representation of connection theory in Finsler geometry and yields to a classification of Finsler connections into the three classes. Here the properties of one of these classes namely the Berwald-type connections which contains Berwald and Chern(Rund) connections as a special case is studied. ...
full textGeneralized Symmetric Divergence Measures and Metric Spaces
Abstract Recently, Taneja [7] studied two one parameter generalizations of J-divergence, Jensen-Shannon divergence and Arithmetic-Geometric divergence. These two generalizations in particular contain measures like: Hellinger discrimination, symmetric chi-square divergence, and triangular discrimination. These measures are well known in the literature of Statistics and Information theory. In thi...
full textcommutative curvature operators over four-dimensional generalized symmetric spaces
commutative properties of four-dimensional generalized symmetric pseudo-riemannian manifolds were considered. specially, in this paper, we studied skew-tsankov and jacobi-tsankov conditions in 4-dimensional pseudo-riemannian generalized symmetric manifolds.
full textWeak convergence theorems for symmetric generalized hybrid mappings in uniformly convex Banach spaces
In this paper, we prove some theorems related to properties of generalized symmetric hybrid mappings in Banach spaces. Using Banach limits, we prove a fixed point theorem for symmetric generalized hybrid mappings in Banach spaces. Moreover, we prove some weak convergence theorems for such mappings by using Ishikawa iteration method in a uniformly convex Banach space.
full textMy Resources
Journal title
volume 9 issue None
pages 63- 69
publication date 2014-05
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023